Design of a DDoS Attack-Resistant Distributed Spam Blocklist

Jem E. Berkes
Dept. Electrical and Computer Engineering
University of Manitoba
Winnipeg, Canada

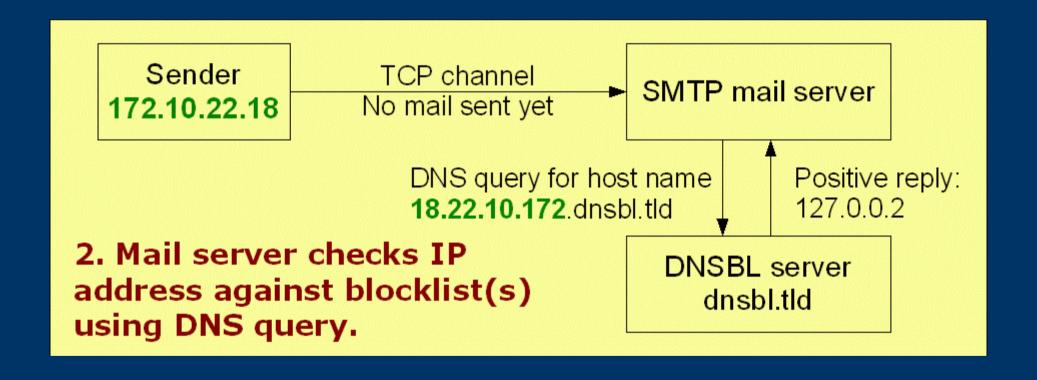
Introduction

- Anti-spam blocklists are vital for the Internet
- Blocklists are targets of DDoS attacks
 - Making operation impractical, costly
- How to make blocklists resistant to attacks?

Presentation outline


- Background
 - Spam blocklists
 - DNSBL technology
 - DDoS attacks
 - Design motivation
- Proposed solution
 - Structure
 - Security
 - Implementation
- Conclusion
- Questions

Background: Spam blocklists


- Primary anti-spam measure for ISPs
- Simple, efficient, effective
- Third party database
- IPs or domain names meeting criteria, e.g.
 - Insecure hosts/open relays/open proxies
 - Hosts that sent spam
 - Hosts belonging to networks that send spam
- Many databases available, nearly all are free and maintained by volunteer organizations

Background: DNSBL technology

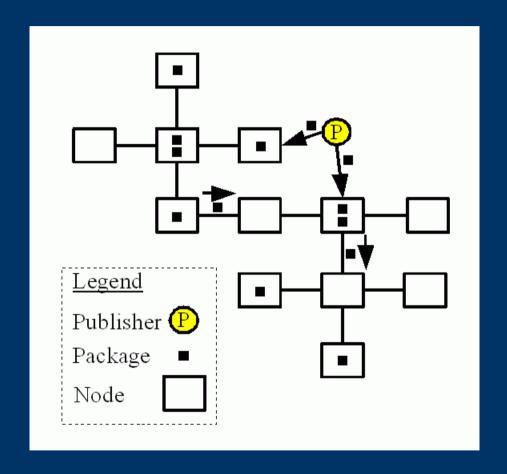
- DNSBL: DNS Blocklist ("RBL", "blacklist")
- First used for Paul Vixie's MAPS/RBL, 1997

Background: DNSBL technology

Background: DNSBL technology

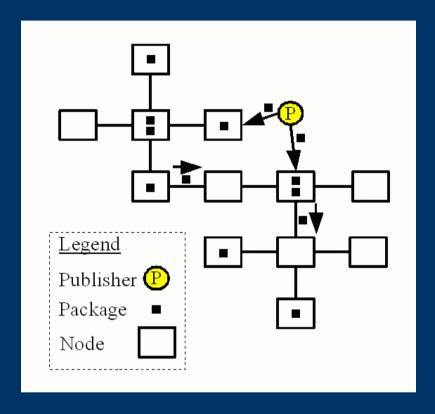
- DNSBLs save bandwidth!
- Front line of spam defence
- Vital for ISPs

Background: DDoS attacks


- DDoS: Distributed Denial of Service
 - Continuous TCP/ICMP traffic from many hosts
- Blocklists are popular attack targets
- Permanently shut down due to DDoS attacks:
 - Osirusoft, Monkeys
- Current targets of ongoing attacks:
 - SPEWS, Spamhaus, SpamCop
- Withstanding attacks is costly

Background: Design motivation

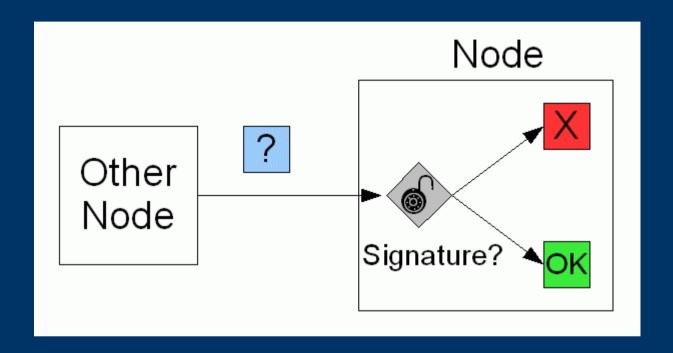
- DNSBLs are easy to attack
- Central servers
 - Can add more servers, but there is high cost
 - Almost all blocklists run by volunteers
- Can blocklists be made resistant to attacks,
 - while maintaining data integrity
 - without requiring costly resources?


Proposed solution: Structure

- Distributed blocklist
- Peer-to-Peer system
- Pooling resources
- No central server
- Publisher in control

Proposed solution: Structure

- Who are the Nodes?
 - Small, medium, large ISPs
 - Anyone with resources
- Who is Publisher?
 - Authority on blocklist data
 - Likely, anonymous


The point: there is no vital entity to attack

Proposed solution: Security

- All Nodes serve blocklist data
- No central server
- How can we trust blocklist contents?
 - What enforces Publisher's control?
- Digital signatures (PGP/OpenPGP)

Proposed solution: Security

- Nodes (and users) can verify data integrity
- All Packages must be signed by Publisher
- Guarantees propagation of authentic data

Proposed solution: Implementation

- Required protocols already exist
 - OpenPGP data signatures
 - HTTP data transfers, or
 - Gnutella for P2P structure
- Users could run local DNSBL
 - i.e. No changes required to mail server software

Conclusion

- Current spam blocklists are threatened
- A distributed (Peer-to-Peer) system
 - Eliminates central servers
 - Allows pooling of resources
- Enforcing digital signatures
 - Maintains data integrity and reliability
 - Gives a Publisher sole control of data
- Distributed spam blocklist can be built using existing protocols

Questions

Any questions?