
DESIGN OF A DDOS ATTACK-RESISTANT DISTRIBUTED SPAM
BLOCKLIST

Jem E. Berkes
Department of Electrical and Computer Engineering

University of Manitoba,
Winnipeg, MB., Canada R3T 5V6
Email: umberkes@cc.umanitoba.ca

ABSTRACT

This paper introduces the high-level design for a
novel distributed spam blocklist system based on Peer-
to-Peer architecture. Deployed on the Internet, this
blocklist would be resistant to Distributed Denial of
Service (DDoS) attacks without requiring costly
investments in server resources. Digital signatures
make widespread network participation possible
without compromising data integrity. This paper
offers a much-needed solution for serving spam
blocklists in hostile environments and outlines the
constituent software and protocols required. The
proposed system requires minimal modification to
existing servers, as it can operate alongside current
software.

Keywords: DDoS spam blocklist distributed P2P

I. INTRODUCTION

The primary defences against Unsolicited Bulk Email
(UBE, or “spam”) utilized by mail servers are blacklists or
blocklists of IP addresses that send spam. Paul Vixie
created a DNS-based blocklist (DNSBL) distribution
technique that has since been adopted by most blocklist
projects. For example, the SORBS project [1] maintains a
list of IP addresses shown to be open relays or proxies
through anonymous testing coordinated by volunteers.
This list of IP addresses or domain names is loaded and
served as a DNS zone by name servers [2].

Mail servers from around the Internet can query a
blocklist by doing a simple DNS query to see if a
particular IP address is listed. Using standard reverse-
octet notation, a host could for example look up
23.16.179.130.dnsbl.domain to see if 130.179.16.23 is
listed in the database. A mail server may wish to deny
mail service to a connecting host that is listed in a certain
blocklist; the specific policy is determined by the mail site
administrator, not the blocklist.

Because these UDP-based queries are efficient and
offer near real-time remote database lookups, they have
become widely adopted for spam filtering in mail server
software such as Postfix [3], Sendmail [4], and
SpamAssassin [5]. Unfortunately, blocklist servers have

also become popular targets for DDoS attacks from
unknown parties; presumably, the attackers' intention is to
disrupt blocklist services that are currently preventing the
distribution of their spam.

The damage caused to both non-profit and commercial
blocklists by DDoS attacks is non-trivial. One of the first
casualties was Joe Jared's blocklists served from
osirusoft.com; in late August 2003, global email was
affected as Osirusoft listed all IP addresses in an effort to
stop queries and shut down the service. George Herbert
clarified on the NANOG forum, “Yes, this is due to a
massive DDOS” [6].

The next month, DDoS attacks against Ron
Guilmette's Monkeys.com blocklist prompted the
termination of that service as well. Ron announced in a
public forum:

“I rode out the first massive DDoS against my site . .
. but over the past three days I have been massively
DDoS'd again, and I think that the handwriting is
now on the wall. I will simply not be allowed to
continue fighting spam.”[7]

Since then, DDoS attacks have continued against even
larger blocklists: Spamhaus [8], SPEWS [9], and
SpamCop [10] have each endured attacks lasting several
months. While these services have survived to date (due
to greater resources), it's clear that malicious Internet
attacks can easily cripple blocklists, or at least make
running such blocklists costly and unattractive. This fact
has motivated the design of a new, distributed blocklist
system as described in this paper.

II. MOTIVATION

One of my own projects is the Weighted Private Block
List (WPBL), a collaborative effort among a handful of
system administrators to detect and share real-time spam
sources [11]. While the information contained in our
blocklist database can be useful for the public, concern
over insufficient server resources and DDoS attacks
prevented us from opening up our list to public access.

Even if other system administrators donate name
servers to help serve the public DNSBL, the fact remains
that all resources allocated to the task become potential

targets for attacks. Because the risks outweigh the
benefits, fear of Internet-based attacks has kept the WPBL
from becoming a useful public resource.

With the realization that this was a common theme
among blocklist operators, an early design for a
distributed blocklist system was drafted [12]. Positive
feedback on the idea from colleagues prompted a more
formal description of the system, as documented in this
paper. One may hope that a distributed blocklist
infrastructure like the one described in this paper can
become a common method for serving public anti-spam
resources using many individuals' resources (with several
blocklists using the same infrastructure).

III. SYSTEM STRUCTURE

While current DNSBLs are served from a relatively
small number of static name servers, a distributed
blocklist system calls for a large, dynamic network of
relatively equal peers. The hosts in this network
communicate in a Peer-to-Peer (P2P) fashion, sometimes
acting as clients and other times acting as servers.

For the high-level description of the distributed
system, Table 1 describes the entities and their purposes.

Table 1. System entities and purposes

Entity Purpose

Publisher
(role)

• Blocklist creator and authority
• Injects data into network

Package
(data)

• Basic data unit, reasonable size
• Created by Publisher only
• Subset of entire blocklist
• Partitioned to facilitate search

Node
(peer)

• Stores blocklist data (Packages)
• Serves Packages to clients/Nodes
• Gets Packages from other Nodes
• Stores information about Nodes

The Publisher is the source of all blocklist data.
Unlike existing DNSBLs, where zone transfers move
entire lists, this distributed system involves the transfer of
smaller data Packages. Various techniques can be used
for effective partitioning of the entire list; examples are
indexing based on the first M octets of an IP address, or
the first N bits of the hash of an entry. Either way, the
goal is to determine the unique Package name that must
contain (or not contain) the desired entry.

Figure 1 shows how the Publisher injects new
Packages into the network, and how these Packages are
distributed among the Nodes. Any Node may act as a
“client”, i.e. the user doing a lookup.

IV. TRUST / INTEGRITY

Since the Publisher's data Packages are passed through
a large number of Nodes, this raises the concern of
malicious data tampering or accidental corruption. This
paper proposes a solution based on public/private-key
cryptography; specifically, digital signatures provided by
PGP technology [13].

The Publisher widely distributes her public key to all
Nodes, through any means. PGP allows anybody to see
public keys – even malicious parties. Any Node that
wishes to participate in the distributed network stores a
copy of the Publisher's public key, for the purposes of
verifying digital signatures on all Packages received
through the network.

The Publisher digitally signs every Package using her
private key. This digital signature consists of a hash code
or message digest which protects the integrity of the data,
along with a time stamp [14]. When a signature is
generated from these fields, the Publisher's public key will
verify the signature only if the signed data remains
unchanged. Authenticity is ensured.

Since no Node can trust another Node (nor any
“Publisher” attempting to inject data), central to the
distributed system's operation is the practice of verifying
digital signatures on all Packages received, and discarding
invalid Packages. This scheme ensures that only certified
Packages propagate throughout the network of Nodes.
The mandatory PGP signature checking also introduces
some interesting characteristics of the network:

• Allows “anybody” to run a network Node, without
having to establish their trust

• Provides reliable detection of rogue Nodes

• Allows the Publisher to inject data from any point of
the network

• Allows an end-point client to pull equally reliable data
from any network Node

Figure 1. Interaction between entities

Legend

P

PPublisher
Package

Node

V. NODE BEHAVIOUR

The behaviour of each Node must facilitate the
propagation and retrieval of valid blocklist Packages
throughout the network. While the specifics of Node
algorithms are beyond the scope of this paper, certain
basic behaviours are vital to running a successful network:

1. Package signature checking: As described earlier,
every Node must use the Publisher's public key to
verify digital signatures on all Packages received,
dropping any invalid Packages and noting rogue peers.

2. Caching: Packages moving through Nodes should be
cached in local storage to some degree. This provides
ample duplication of the blocklist data, allowing
several Nodes to answer calls for data.

3. Tracking neighbours: Nodes must be aware of URLs
for other Nodes, perhaps through human collaboration.
This knowledge may be shared with other Nodes,
provided the neighbours are returning authentic
Packages.

4. Package updating: Packages with newer timestamps
(also protected by digital signatures [14]) must
invalidate older Packages, and Nodes must make an
effort to acquire newer data once a Package has
become stale. This should allow fresh data injected by
the Publisher to propagate.

5. Content advertising: Nodes should tell their peers what
they have cached locally, in order to help spread the
most recent data and facilitate rapid Package lookups
in the future.

VI. PROTOCOLS

Two main protocols are ideal for the proposed
distributed blocklist due their widespread use and
extensibility.

Hypertext Transfer Protocol v. 1.1 [15]

HTTP is proposed for the transfer of data between
Nodes in the network, using standard URLs. GET and
POST requests can be used to both download and upload
arbitrary amounts of data over TCP/IP connections.

The use of TCP itself, as opposed to UDP for current
DNSBL lookups, introduces several low-level advantages.
TCP is a connection-oriented protocol [16] that uses
sequence number handshaking in connection
establishment, which makes forging IP addresses nearly
impossible (an important consideration for a system
designed to withstand attacks). Because it's connection-
oriented, TCP also ensures that unresponsive hosts are not
bombarded with packets. UDP packets, on the other
hand, often bombard unresponsive DNS servers
(automatic retries) causing unintentional DoS attacks.

HTTP servers are already widely deployed on the

Internet, running on small and large sites alike. This
provides a stepping stone to easily deploying the
distributed blocklist system, perhaps as a CGI application
or HTTP server module. An important aspect of the
distributed blocklist is having as many Nodes as possible
participating, and HTTP provides a suitable generic
infrastructure.

Finally, HTTP offers many extensions and features
that can be very useful for inter-Nodal communications:
virtual hosts, gzip stream compression, flexible headers,
and even Transport Layer Security [17].

OpenPGP [14]

The OpenPGP specification, which is based on Philip
Zimmermann's PGP [13], provides a standard message
format used by interoperating PGP software such as the
GNU Privacy Guard [18]. The specification describes the
format for public/private keys as well as digital signatures,
a vital component of the distributed blocklist.

An established message format standard is required for
Nodes that may be running diverse software, since all
must recognize and correctly interpret the Publisher's
public key as well as digital signatures on Packages.

VII. TYPICAL USE

In order to establish the blocklist system, a number of
sites would install the appropriate software on their HTTP
servers. Nodes would be configured according to
available resources: a home broadband user, for instance,
may wish to cache little data and provide mostly referrals,
while a large ISP may cache all Packages and answer all
public queries directly.

A Publisher would announce their blocklist name and
public key, and people wishing to participate in this
particular blocklist network would install the Publisher's
public key on their own Nodes. Node operators would
swap URLs with colleagues; Nodes with plentiful
resources may publicly advertise their URLs to provide
smaller Nodes with an entry point into the network. The
Publisher can now send signed Packages to large Nodes
and these Packages should become accessible across the
network.

Someone wanting to query the blocklist would
establish their own Node and run a local DNS server to
provide DNSBL service. This way, the mail server
software need not be modified.

Looking up an IP address in the blocklist involves
determining the appropriate Package, checking local
storage for the Package or going out to the network if the
Package does not exist or has expired due to age (see
Figure 2). Since each Package covers a significant
portion of IP address space, few blocklist queries should
result in actual P2P network traffic.

VIII. ATTACK SCENARIOS

Scenario 1: Standard Denial-of-Service

If an attacker wants to perform a DDoS attack, they
would target the higher-profile Nodes in the network.
However, current network Nodes already know of plenty
other Nodes by this time, meaning the attack would only
cause difficulties for new Nodes trying to join the
network. Packages are heavily duplicated across the
network, meaning that all blocklist information should still
be accessible. Announcing URLs for new Nodes publicly
would quickly introduce new network entry points. A
dynamic host cache could also be used to provide a large
list of potential network entry points.

Scenario 2: Rogue Nodes

If a set of attackers want to disturb the network or
tamper with blocklist data, they may attempt to establish a
number of rogue Nodes. If these peers modify blocklist
Packages, other Nodes will reject the Packages due to
invalid digital signatures (which can not be forged without
compromising the Publisher's private key). Nodes
providing invalid data would be excluded from inter-
Nodal referrals, effectively dropping the rogue nodes from
the network.

Scenario 3: Attacking the Publisher

The Publisher's home site might become an attractive
target for attackers. However, due to digital signatures on
all Packages, any Node can be used to inject new data into
the network. This further provides anonymity for the
Publisher behind a fleet of Nodes.

IX. IMPLEMENTATION ALTERNATIVES

While a decentralized distribution system using HTTP
can be built specifically for this blocklist application,
alternative implementations that make use of existing P2P
infrastructure may be more practical. One notable P2P
network that already exists and which offers the required
facilities is Gnutella, described by the open Gnutella
protocols v0.4 and v0.6 [19]. Clients adhering to this
protocol and communicating with neighbouring Nodes
can share the (digitally signed) data Packages as described
earlier. Gnutella further offers mechanisms to search for
data and organize groups of Nodes.

Another implementation alternative relates to the
direction of information flow. The system outlined in this
paper describes unidirectional data flow from a Publisher
to many clients. To better satisfy the needs of an
anonymous public service, a distributed blocklist system
may provide clients with a mechanism to send feedback
data to the Publisher. This feedback is essential for
refining the blocklist contents and correcting errors,
without having to resort to a standard web site (which
becomes another DDoS target). This bidirectional data
flow between the Publisher and the clients can again be
accomplished over a P2P network like Gnutella,
protecting the Publisher from directed attacks.

X. CONCLUSION

The distributed spam blocklist system described in this
paper provides a new way to publish blocklists that is
more resistant to DDoS attacks than conventional
DNSBLs. The proposed system further allows a number
of cooperating hosts to pool resources, rather than placing
large resource burdens on few servers. Both are
significant advantages, given the challenges facing public
anti-spam services.

The primary disadvantage of the proposed system is
decreased speed and increased overhead of queries,
compared to today's DNSBLs. Further work is required to
establish whether the proposed distributed system can
operate with acceptable performance. Nevertheless, the
proposed structure and protocols should provide a useful
basis for further development.

ACKNOWLEDGEMENTS

I would like to acknowledge the networking and
attack-scenario advice, as well as general help offered by
Dr. Robert McLeod of the University of Manitoba. I
would also like to thank members of the mail
administrator community for their valuable feedback.

Figure 2. Looking up an IP address

Lookup
172.10.22.18
[Package 172.10]

Package
172.10

172.10.15.2
172.10.22.18
172.10.29.52
172.10.50.8
172.10.98.26
172.10.105.2

Local cacheNetwork
search

REFERENCES

[1] SORBS, Spam and Open Relay Blocking System,
http://www.sorbs.net/, May 2004.

[2] P. Mockapetris, RFC 1034: Domain Names –
Concepts and Facilities, ftp://ftp.rfc-editor.org/in-
notes/rfc1034.txt, Nov 1987.

[3] W. Venema, Postfix, http://www.postfix.org/, May
2004.

[4] Sendmail Consortium, Sendmail Home Page,
http://www.sendmail.org/, Dec 2002.

[5] SpamAssassin, SpamAssassin – Tests Performed,
http://www.spamassassin.org/tests.html, May 2004.

[6] G. W. Herbert, Re: Re[2]: relays.osirusoft.com,
http://www.merit.edu/mail.archives/nanog/2003-
08/msg01145.html, Aug 2003.

[7] R. F. Guilmette, ANNOUNCE: MONKEYS.COM:
Now retired from spam fighting,
<vn1lufn8h6r38@corp.supernews.com> on
USENET news.admin.net-abuse.email, Sept 2003.

[8] Spamhaus Project, The Spamhaus Project – dDoS
Attacks, http://www.spamhaus.org/cyberattacks/,
May 2004.

[9] SPEWS.ORG, Spam Prevention Early Warning
System, http://www.spews.org/, May 2004.

[10] SpamCop.net, Inc., SpamCop.net,
http://www.spamcop.net/, May 2004.

[11] J. Berkes, WPBL - Weighted Private Block List,
http://wpbl.pc9.org/, Feb 2004.

[12] J. Berkes, Distributed HTTP server blocklist system,
http://www.sysdesign.ca/archive/dhttp-bl.txt, Sept
2003.

[13] P. Zimmermann, The official PGP user's guide
(Cambridge, MA: The MIT Press, 1995).

[14] J. Callas, L. Donnerhacke, H. Finney, R. Thayer,
RFC 2440: OpenPGP Message Format,
http://www.ietf.org/rfc/rfc2440.txt, Nov 1998.

[15] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, T. Berners-Lee, RFC 2616:
Hypertext Transfer Protocol – HTTP/1.1,
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt, June
1999.

[16] J. Postel, RFC 793: Transmission Control Protocol,
ftp://ftp.rfc-editor.org/in-notes/rfc793.txt, Sept 1981.

[17] R. Khare, S. Lawrence, RFC 2817: Upgrading to
TLS Within HTTP/1.1, ftp://ftp.rfc-editor.org/in-
notes/rfc2817.txt, May 2000.

[18] Free Software Foundation, Inc., GnuPG,
http://www.gnupg.org/, May 2004.

[19] Gnutella Developer Forum, The GDF,
http://groups.yahoo.com/group/the_gdf, July 2004.

